Integration of air quality in the LCA of neighbourhoods

Rachna Bhoonah rachna.bhoonah@agroparistech.fr

AgroParisTech

UNIVERSITE PARIS-SACLAY

Life cycle assessment (LCA)

Systemic and multicriterial approach to quantify **environmental impacts** (health, biodiversity, ressources) over the lifetime of the studied system

- Developed with a scientific approach, based on observations – reduce instictive choices
- Better traceability: assess all life cycle steps, study origins of materials, energy mix...
- Decision-making tool: study different aspects of an object/service to improve its environmental performance, right from its design

LCA of neighbourhoods

- Help integrate human health impacts due to atmospheric pollutants (indoors and outdoors) in the LCA of neighborhoods
- Help to integrate environmental benefits of urban greening
- Building energy simulation, LCA and urban planning tools -> help in decision-making

Air pollutants and their potential health effects

PM_{2.5}:

1st cause of DALYs (Disability-Adjusted Life Years) in 2021: 231 million DALYs 1st cause of deaths in 2021: 7.8 million Household air pollution responsible for 3.2 million deaths in 2020, incl. 237 000 children <5 years (WHO)

0,: 8.8 million DALYs in 2021 Health effects

Short-term

Dizziness, coughing, head aches Skin, throat, eyes and lung irritation

Long-term Poor cognitive capacities Stroke Chronic obstructive pulmonary disease Acute lower respiratory infections Skin/ nose/ throat/ lung cancer

VOCs: Volatile organic compounds PM_{25} : fine particulate matter <2.5µm (heavy metals, black carbon...) CO_2 : carbon dioxide, O_3 : ozone, NO_x : nitrous oxides

Objective

LCA + AQ decision-making tool in the building / urban planning sector Q: How to improve the evaluation of AQ impacts in LCA?

Impact assessment method

Building ecodesign

Indoor concentrations

- Concentrations modelled with INCA-Indoor
- Input: emission rates (µg/h)

activity

 Based on outdoor concentrations (dynamic) deposition rate (dynamic) room volume (30 m³) ventilation rate (0.6 ACH)

outdoors

Indoor PM2.5 concentrations from outdoors (navy) and increment from one hour activities (orange) over 24 hours at 0.6 ACH

Fine particulate matter from indoor activities

(a) Intake of PM_{2.5} and (b) health impacts for different activities and ventilation scenarios, compared to WHO recommended limits: daily exposure (red) and annual exposure (orange)

Activity VOC emissions and chemical reactions

- VOC emission data for cleaning with detergent and occupant skin/breath
- Indoor air chemistry model reference: SAPRC-07 model¹ (O3 and NOx + VOCs)

Terpinolene and ozone concentrations indoors in the presence of VOC emissions from floor cleaning and occupants

- Terpinolene produced by chemical reactions
- Ozone consumed
- Higher ozone concentrations in summer than winter: more reactivity

1. Carter (2010)

Health impacts

Health impacts due to occupant and activities VOC emissions, with the addition of chemical reactions

Bhoonah et al. 2024

Building LCA

High impacts due to heating

and IAQ (VOCs and $PM_{2.5}$) at an average ventilation rate of 0.6 ACH

Bhoonah et al. 2024

Optimal ventilation rates (office building)

Urban vegetation

- Absorption (Leaf Area Index up to 5-6 times higher than ground suface)
- Deposition
- Barrier effect
- Surfaces with no local emissions

(parks/forests...)

Abhijith et Kumar 2020

Site description

Jardin du Palais Universitaire in Strasbourg (STBG)

Vegetation

No vegetation	Reference scenario	High vegetation
Ozene levele	27% road 47% trees 26% grass	10% road 81% trees 9% grass
Reference	High levels	5
From ATMO Grand-Est (Strasbourg)	From AirParif (Paris)	

Average occupancy of 1 person over 12 hours (8-20h) Results can be multiplied by different occupancy rates

Ozone reactivity NOT considered

Ozone concentrations (TEB-Surfatm)

Canyon O3 concentrations are higher than the WHO guideline for:

- ➤ 4% of the time in non-vegetated scenarios
- \succ <1% of the time in vegetated scenarios.

O3 concentrations decrease by:

- > up to 6% in the **canyon**
- > 30 to 36% in the **canopy** with vegetation v/s without vegetation

Human exposure and impacts

■ Canyon STBG ■ Canyon PAR ■ Canopy STBG ■ Canopy PAR

PM deposition: ongoing work

Reduction: lower emissions, dilution or deposition

Increase **deposition**: vegetation increases deposition surfaces (+absorption temperature regulation, biodiversity...)

Method

Human health risks associated with indoor air pollutants (e.g. work places)

- Coordination of expert groups
- Research for methodological development (European PARC Project)

Questions?...